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ABSTRACT

We state upper and lower bound formulas for the torsional stiffness of
shafts of varying circular cross section, in accordance with the classical
Michell formulation of this problem, through use of the principles of minimum
potential and complementary energy. The general results are used to obtain
explicit first-approximation bounds which, for the limiting case of the
cylindrical shaft, reproduce the known elementary exact results. It is con-
jectured that the first-approximation lower bound is significantly closer to

the exact result than the first-approximation upper bound.

A report on work supported by the Office of Naval Research,
Washington, D. C.
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ON BOUNDS FOR THE TIORSIONAL STIFFNESS OF SHAFTS OF

VARYING CIRCULAR CROSS SECTION
E. Reissner

F‘ l We consider, in terms of cylindrical coordinates r and z, a
homogeneous isotropic linear elastic solid bounded by p.lane surfaces z =0
and z = L, and by a surface of revolution r = ro(z) for 0 < z s L.. We assume
that the surface portion z = 0 is held fixed, and that the boundary conditions
for the surface portion z = L are mixed conditions, of prescribed circumfer-
ential displacement v = @r, and of vanishing normal stress o, and shear

& stress Trz' We further assume that the surface portion r = ro(z) is traction

4

free.

The solution of this problem can be obtained, as first shown by J. H.
' Michell, by assuming the vanishing of all radial and axial displacements and
of all stresses except Tr9 and T,6° With this there remain the stress strain

relations Tre = G‘}’re and TzO = G)’ze, with strain displacement relations

-1
' yze"v,z ; yre-r(r v),r < (1)
_‘ ¢ where v is independent of 8, and with stress stress-function relations
3
- -2
= v = -
Tze r T ’ Tre r \p’z ’ (2)

where ¥ is independent of 6.

While the boundary conditions for z =0 and z = L are now directly

given in terms of v, the corresponding conditions of no tractions for 4

r= ro(z) are readily shown to be equivalent to the one condition ¥ = const.

In what follows we are interested, in particular, in the values of the

stiffness coefficient K in the torque-twist relation T = KO® where

r
- o 2
T = ZﬂJO Tzer dr. (3)
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Specifically, our object is to obtain upper and lower bounds for K, through
use of both the principles of minimum potential and minimum complementary
energy, analogous to what has recently been done for the problem of the end
loaded cantilever beam, treated within the framework of the theory of plane

stress [1].

The appropriate basic inequalities for the special case under consid-
eration are readily shown to be of the form

i oL . o ; L I
To - 2n| J Brdrdz < 1TO < sz J A rdrdz. (4)
070 00

In this we have

e | ~ 2 ~2 ~ ____1__ =2 =2
A= 2G(yze +‘)’r9), B _ZG(TZS +Tr9) g 15

where )’z and ‘)‘re are given in terms of a function v in accordance with

0

(1), and ?z and ‘T’re are given in terms of a function ¥ in accordance

9
with (2). The function v must be differentiable and satisfy the boundary

~

conditions v(r,0) =0, v(r,L) =€r. The function ¥ must also be differ-
entiable and satisfy the boundary condition a[ro(z), z] = const., for 0 =<z <L,
Furthermore, v and ¥ must be such that the double integrals in (4) do in
fact exist. We note that the equal signs in (4) apply in the event that v and

V¥, respectively, are the actual solution functions v and ¥ of the Michell

boundary value problem.

First - Approximation Upper Bound. We assume

v = rV(z) (6)
giving ;re =0 and ;'ze - rV'(z) and therewith

o ,I..f,ro g L
n, - ZﬂJ Ardrdz = lnc[' (V'(z)F r* dz. (7)
d J > . o

00 0

We determine V(z) by setting 5Hd = 0, subject to the constraint
conditions V(0) = 0, V(L) =@, and obtain




I r*dz (8)
0o ©°
V(z) =©
sl oo :
J r dz
6 ®
T.. and.therewith crer e e R T R s ey S il a2 i A e
a 28
F gl v 3 g (9)
4J e
o
and then, from (4),
G e
o el Pri s~ i
'\ Zr r  dz
1 Jo o
We note that Ko is the approximate value of K which follows by an
¥ elementary combination of the solutions for a large number of short shafts
of appropriate differing uniform circular cross section.
First-Approximation Lower Bound. We assume
{ i
v = c(r/ro)‘ ' (11)
E

which satisfies \I'(ro,z) = ¢, is exact for the uniform diameter case, and gives

~ -4 ~ -5 2
T = = "
' 26 4cro = rra 4cr° ror . (12)
Therewith
~ o ,L ® 4 e 2 ,L
4 ns :T@—Zﬂj j ° B rdrdz :21Tc9—4‘”C J fl+-§—(r')2]d—§-. (13)
00 0 % ro

~

We determine the smallest value of Hs by setting ‘afls /3¢ = 0. This gives

|
§

¢ » iy il nGe” . (14)

e » 3 : s I
- ’ E
4]0 [1+ 3 (F))r ~dz

N -2— ,.2 wil
4'0[1 +3 (ro) ]ro dz




and then, from (4),

G
K, , »e— L . (15)
2[7 {14 (2/3%2!)?] r2* dz
o o
0
We note that KLl = KUl = Ko' as it must be, for the case of the uniform

circular cylinder for which ré = 0, throughout. For other cases we expect,

on the basis of experience with other problems, that KLl will be a better

approximation than KUI to the exact value of K.

Results for conical shafts. Setting ro = a + z tangy, where a and

o are constants we find, from (10) and (15),

KLl 3 1 (16)
B 3 "
KUI 1 4+ (2/3) tan®q
showing a significant difference between KLl and KU] for sufficiently large
values of ¢ For example, when ¢ = 30° then KLI/KUI =9/11~ .82, and

when ¢ = 45° then KLI/KUI = .6. We note that the known closed-form

solution for conical shafts, [2], is not an exact solution of the problem as stated
here inasmuch as this closed-form solution implies rigid rotations of

spherical end surfaces, rather than of plane end surfaces.

Higher-Approximation Bounds. It appears to be easier to derive

improved lower bounds of relatively attractive appearance than to do the
same for the problem of upper bounds.

In order to obtain a sequence of lower bounds K for N =1,2...

LN
we may set
2N-2
- 4 & 2
¥ (r/ro) [cl cz(r/ro) + 000 + cN(r/ro) i< (17
and then determine values of the coefficients ¢, from the N simultaneous
linear equations aﬁs/acn 20, 8210,8....N:

In order to obtain improved upper bounds K we may set, in

UN

generalization of (6)




V=0[rVy(z)+r3Vy(z) +... + rZN' lVN(z)] . (18)

In this the functions Vn have to satisfy the constraint boundary conditions
Vn(O) =0, V,(L) =1, V(L) = 0,...,VN(L) = 0, with the variational
equation 6Hd= 0 then leading to a system of simultaneous linear second-
order differential equations for the functions Vn.

To illustrate the nature of the problem we consider the case

v =@(rV, + r®V,) where we will assume, additionally, that V. concides with

the solution function V in our first-approximation calculation. We now

obtain, in place of equation (7)

Ild=

INE]

3 8 1 4
Ge? [ frtiwiit + - rf)vg + TRV 4 3eVYVeldz , (19
0

and with this, as differential equation for Vo,

16 4 8ror;

syy, _ 29 e S U G A LI
GoVE - == %y = aoietuy) R (20)

3‘)0r0 dz

The associated minimum value of ﬁd follows from (19), with the help of (20)

and (8), in the form

2
i, = —— [1 --;-‘- s r(;VZdz] : (21)
4 r-%dz i
(o]
0
L]
and then from (4), and with Ko as in (10),
. 4oL
Kyz = K, [1 - 'fo rorovadz] . (22)

Equation (22) may be written, with the help of (20) and upon making use of

the boundary conditions for V,, in the alternate form

= 2 L 8 2 _3 a 2 '
o2 My {l 5K J‘O [rovz * 716 TolVd) ]dz} : e

5




which makes it evident that KU2 is in fact a better upper bound for K than the
first approximation bound KUI'
As regards the determination of the function V, we note the possibility
of an explicit solution, as a combination of powers of ro for the case P Ea
+ z tang. The resulting ratio KUZ /KUI is a less simple expression than the
ratio KLI/KUI in (16) and we refrain from stating it here, in the hope that

some alternate, simpler, upper bound improvement might be obtained later :

in a different way.
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